skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pipiras, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cherifi, H; Rocha, L M; Cherifi, C; Donduran, M (Ed.)
  2. Cherifi, H.; Mantegna, R.N.; Rocha, L.M.; Cherifi, C.; Micciche, S. (Ed.)
    We investigate the statistical learning of nodal attribute distributions in homophily networks using random walks. Attributes can be discrete or continuous. A generalization of various existing canonical models, based on preferential attachment is studied, where new nodes form connections dependent on both their attribute values and popularity as measured by degree. We consider several canonical attribute agnostic sampling schemes such as Metropolis-Hasting random walk, versions of node2vec (Grover and Leskovec 2016) that incorporate both classical random walk and non-backtracking propensities and propose new variants which use attribute information in addition to topological information to explore the network. The performance of such algorithms is studied on both synthetic networks and real world systems, and its dependence on the degree of homophily, or absence thereof, is assessed. 
    more » « less